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We develop a method of analysis for testing the marginal value
theorem (MVT) in natural settings that does not require an inde-
pendent definition or mapping of patches. We draw on recent
theoretical work on area-restricted search (ARS) that links turning-
angle and step-size changes to geographically localized encounter-
rates. These models allow us to estimate “giving-up times” using
encounter-annotated GPS tracking data. Applied to a case study of
Nahua mushroom foragers, these models identify distinct forms of
intrapatch and interpatch search behavior, with intrapatch search
transitioning to interpatch search after a predictable interval of
time since the last encounter with a harvested mushroom. Our
empirical estimate of giving-up time coincides with the theoreti-
cally optimal giving-up time derived under the MVT in the same
environment. The MVT is currently underused in studies of human
foraging and settlement patterns, due in large part to the diffi-
culty of identifying discrete resource patches and quantifying their
characteristics. Our methods mitigate the need to make such dis-
crete maps of patches and thus have the potential to broaden
the scope for empirical evaluations of the MVT and related the-
ory in humans. Beyond studies of naturalistic foraging in humans
and other animals, our approach has implications for optimiza-
tion of search behavior in a range of applied fields where search
dynamics must be adapted to shifting patterns of environmental
heterogeneity affecting prey density and patchiness.

area-restricted search | marginal value theorem | tracking | GPS |
Lévy flight

Foragers whose optimal search mode entails mobility (1) must
invest some fraction of their limited energy budget in active

search for randomly and often sparsely distributed (2) food items
or natural resources. This active mode of search can require a
substantial expenditure of energy (1, 3), increase exposure to
environmental hazards and predators (4), and entail the opportu-
nity costs of separation from a home base or social group. As such,
understanding how mobile foragers increase resource encounter-
rates has been central to a variety of foraging models in evolu-
tionary biology, with applied consequences for fields as diverse as
criminology (5), cognitive science (6), engineering (7), conserva-
tion biology (8, 9), and agricultural pest management (10). Early
empirical work inspired by the marginal value theorem (MVT)
(11) focused on models of patch choice (12, 13) and patch-
residence times (14, 15). More recent work, drawing on increased
computational resources, has focused on identifying efficient
random walk search algorithms (16–19)—e.g., for Brownian
walks, Lévy flights, and area-restricted search (ARS)—which can
model a forager’s movement patterns even in cases where patch
choice and patch-residence times are hard to measure.

Brownian walk search patterns can be nonoriented and dif-
fusive (e.g., dispersal), or oriented and superdiffusive (e.g.,
migration), while Lévy flight search patterns are scale-free,
nonoriented, and superdiffusive (20). ARS search patterns, in

contrast, are composites of intensive (low speed and high turning
rate) and extensive (high speed and low turning rate) search peri-
ods (21). Simulation models suggest that encounter-conditional
ARS can be more efficient than unconditional Lévy flights or
Brownian walks with equal average movement velocities (e.g.,
ref. 22), but little work has explored how ARS parameters can
be effectively tuned, or how the insights of the MVT literature
can be applied to models of foraging in continuous rather than
discrete environments.

Here, we use a model of adaptive, encounter-conditional
search heuristics to link the MVT and ARS literatures. We
demonstrate that the MVT provides numerical predictions for
the optimal number of time-step lags for which a slow and tor-
tuous ARS should be enacted following an encounter. We then
draw on a database of encounter-annotated GPS data—GPS
tracks paired with GPS waypoints on the time and location of
food item encounters—recorded during focal follows of Nahua
mushroom foragers searching in a natural setting. These data
are used to fit a Bayesian model of encounter-conditional ARS
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trajectories. The empirical estimates of “giving-up time”
(GUT)—a measure of “intrapatch” search duration—from this
model are numerically concordant with predictions of the same
quantity derived from the MVT. More generally, we illustrate
a method of analysis for testing the MVT in natural settings
that does not require an independent definition or mapping of
patches—expanding the empirical scope of the MVT to cases
where quantitative data on patch boundaries and their respective
food item densities are unavailable or impossible to obtain.

Theory on Search in Continuous Environments
ARS. A central focus in movement ecology is how mobile preda-
tors can most efficiently locate randomly distributed food items.
A body of literature on the Lévy flight foraging hypothesis has
suggested that foragers should search for randomly distributed
food items using approximations to Lévy flights (18, 23, 24), since
they are frequently more efficient than Brownian movement
at encountering sparse, randomly distributed food items. More
recent work on intermittent and two-stage search has exam-
ined how encounters with food items (22, 25, 26) can trigger
ARS behavior (27–34) in which search velocity and turning-
angle (35) are modified for some interval of time. This work
demonstrates that foragers of patchily distributed resources can
use a simple heuristic—search with slower and more tortuous
movement after a recent encounter with a food item (intrapatch
search) and move with more rapid and linear movement otherwise
(“interpatch” search)—to improve search efficacy. These models
demonstrate that ARS can outperform nonconditional Lévy or
Brownian movement by minimizing search time (25), increasing
encounter rate, and decreasing risk of starvation (22). However,
it remains unclear how the parameters governing encounter-
conditional ARS trajectories can be tuned to improve encounter
rates in a given environment. In this paper, we draw on the
MVT to provide some important—but partial—insights into the
effective tuning of such parameters.

The MVT. Efficient foragers searching in a patch—a localized
aggregation of resource items—face a declining rate of return
as they continue to harvest (36). As resources are depleted or
their availability is depressed, a forager faces the question of
how long it should remain in its current patch before seeking
out a fresh patch to harvest. Assuming a discrete set of patches,
Charnov’s MVT (11) predicts that a forager should transition
into interpatch search when the marginal encounter rate in its
current patch drops to the overall encounter rate averaged over
interpatch search and intrapatch harvest.

Despite the sometimes “daunting” data requirements (37, p
257) involved in testing the MVT, studies of human (38–41)
and nonhuman (14, 42, 43) foragers have found some evidence
consistent with MVT predictions. Venkataraman et al. (41), for
example, use extensive, daily records of Batek foraging returns
to fit resource-depletion curves and show that camp-relocation
events generally conform to MVT predictions.

Nonetheless, testing if a given group of foragers actually
use MVT-predicted GUTs is complicated. The overall forag-
ing encounter-rate is among the easier variables to observe and
measure (11, 44, 45). It is considerably more difficult to pro-
duce the independent information required to delineate the key
features of patches—their locations, boundaries, resource lev-
els, and responses to exploitation. In controlled experimental
designs, patch-specific data are not generally prohibitively dif-
ficult to acquire. However, food items growing in natural settings
are seldom distributed in discrete, easily defined patches (46–49).
Rather, they are typically distributed continuously and, even if
clustering or spatial autocorrelation in their distribution is high,
the “boundaries” between high- and low-density regions can be
fuzzy. The difficulty associated with partitioning continuous envi-
ronmental variation into discrete patches thus has been a key

impediment to empirical tests and technological applications of
the MVT (41). Methods of analysis that mitigate the need to
make a discrete map of patches have the potential to broaden the
scope for empirical evaluations of the MVT and related theory
(e.g., ref. 50).

Integrating ARS Models and the MVT to Explain the Search Pat-
terns of Nahua Mushroom Foragers. To generalize the insights of
the MVT to the case of sessile food items that are distributed
continuously over an environment with spatial autocorrelation
(i.e., patchiness), we use recent mathematical and statistical
approaches developed in the ARS literature (19, 22, 26, 34) to
estimate the number of time-step lags for which turning-angle
and step-size changes are associated with encounters with food
items. We use encounter-annotated GPS data to make these esti-
mates. The number of time-step lags for which these effects are
significant multiplied by the length of each time-step yields an
estimate of the GUT (42, 51) for a local patch (22). Although
GPS tracks annotated with behavioral observations on encoun-
ters with food items can themselves be difficult to acquire, such
data have been collected in nonhuman animals using clever
research designs (e.g., refs. 29 and 30), as well as in humans (e.g.,
ref. 34); increasingly powerful and simple-to-use GPS units will
undoubtedly make production of such data easier.

In the following sections, we first introduce the field-site
and foraging context. After this, we provide the mathemati-
cal details describing how theoretical GUTs are calculated and
how empirical GUTs are estimated. We then demonstrate the
main results that: (i) encounter-annotated GPS tracking data
show that Nahua mushroom foragers respond adaptively to
encounters with food items by increasing turning-angle between
time-steps and decreasing search velocity, and (ii) this response
leads to distinct forms of intrapatch and interpatch search behav-
ior. Intrapatch search transitions to interpatch search after an
average of 6 to 13 time steps, representing 3.0 to 6.5 min, since
the last encounter with a harvested mushroom—an estimate that
coincides closely with the theoretically derived GUT of 8 to 21
time-steps under the MVT. We conclude with a discussion of the
relevance of our results for future studies of human and nonhu-
man foraging behavior and then comment on the applicability of
our model to a range of applied problems.

Fieldwork
The database used here consists of focal follows conducted by
authors L.P.-C. and C.C.-L. with mushroom foragers from a
Nahua community in 2006 and 2007 within La Malinche National
Park, Tlaxcala, Mexico (49, 52, 53). L.P.-C. and C.C.-L. main-
tained a position 1 to 2 m from the focal forager during slow
movement or rest and 2 to 5 m during rapid movement. GPS
positions were recorded at 30-s intervals using a Garmin GPS
V Personal Navigator; the data are analyzed at this resolution.
Table 1 provides descriptive statistics for each of the 34 foraging
trips in the sample.

In total, L.P.-C. and C.C.-L. recorded 141.5 h of focal fol-
lows consisting of 16,979 GPS data points. Annotated points of
interest were recorded on the GPS unit for each of the 1,485
mushroom encounters. Fig. 1A plots each recorded search path
and encounter in the database. Fig. 1B plots a higher-resolution
section of a single path. Focal foragers were selected opportunis-
tically on each day of research with the constraint that the sample
be balanced by sex. Informed consent was obtained from each
forager before data collection.

Mushroom gathering is a rainy season (June–September)
activity for families living in La Malinche. Foraging bouts are
frequent (three to five per week) among the families that com-
mercialize mushrooms. Our encounter-annotated GPS tracks
reflect the behavioral patterns of single foragers on these
trips; however, mushroom foraging is at least partially a social
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Table 1. Descriptive statistics for 34 mushroom foraging trips

Trip GPS pts. Dist., km Duration, h Av. speed, km/h Elev., m Pts. w/enct. Frac. enct. Mushrooms collected

1 596 14.33 4.97 1.72 704.1 23 0.04 89
2 589 15.29 4.91 1.83 711.4 25 0.04 57
3 620 9.75 5.17 1.17 451.3 44 0.07 169
4 544 9.93 4.53 1.19 412.0 60 0.11 143
5 428 4.51 3.57 0.54 169.7 65 0.15 188
6 455 8.09 3.79 0.97 373.5 55 0.12 176
7 536 7.29 4.47 0.87 458.5 67 0.12 197
8 458 5.58 3.82 0.67 373.0 23 0.05 59
9 526 6.85 4.38 0.82 376.9 67 0.13 136

10 632 9.17 5.27 1.10 559.5 34 0.05 72
11 582 6.76 4.85 0.81 385.0 79 0.14 199
12 629 9.31 5.24 1.12 574.9 27 0.04 111
13 434 6.74 3.62 0.81 291.3 27 0.06 37
14 386 6.02 3.22 0.72 461.9 15 0.04 49
15 449 5.70 3.74 0.68 396.1 13 0.03 33
16 503 7.33 4.19 0.88 324.9 30 0.06 164
17 507 7.00 4.22 0.84 313.4 26 0.05 155
18 301 5.31 2.51 0.64 217.2 9 0.03 18
19 356 5.05 2.97 0.61 152.4 25 0.07 50
20 653 8.05 5.44 0.97 216.8 64 0.10 197
21 648 8.26 5.40 0.99 188.4 56 0.09 136
22 366 3.69 3.05 0.44 169.7 29 0.08 78
23 350 3.51 2.92 0.42 167.3 14 0.04 53
24 600 7.16 5.00 0.86 316.8 105 0.17 389
25 526 6.76 4.38 0.81 287.5 70 0.13 234
26 442 4.64 3.68 0.56 266.3 52 0.12 179
27 434 4.57 3.62 0.55 203.3 50 0.12 135
28 436 10.15 3.63 1.22 500.9 14 0.03 88
29 468 8.29 3.90 0.99 413.8 16 0.03 30
30 425 9.35 3.54 1.12 468.1 37 0.09 108
31 475 7.54 3.96 0.91 60.1 30 0.06 42
32 493 7.44 4.11 0.89 58.6 48 0.10 89
33 557 6.18 4.64 0.74 410.9 81 0.15 206
34 575 5.80 4.79 0.70 418.1 105 0.18 301
Sum 16,979 251.40 141.50 30.16 11,853.6 1,485 2.90 4,367
Mean 499 7.39 4.16 0.89 348.6 44 0.09 128
Minimum 301 3.51 2.51 0.42 58.6 9 0.03 18
Lower quartile 434 5.70 3.62 0.68 216.8 25 0.04 57
Median 498 7.08 4.15 0.85 373.2 36 0.08 123
Upper quartile 582 8.29 4.85 0.99 451.3 64 0.12 179
Maximum 653 10.15 5.44 1.22 711.4 105 0.18 301

For each trip, we describe the number of GPS data points (GPS pts.) recorded, the distance traveled (Dist.), the duration, the average speed (Av. speed),
the change in elevation between lowest and highest points on the search path (Elev.), the number of GPS points with mushroom encounters (Pts. w/enct.),
the fraction of GPS points with mushroom encounters (Frac. enct.), and the total number of mushrooms collected during the search. Summary statistics by
column are given at the bottom of the table.

activity (54). On each trip, approximately 5 to 10 individuals for-
age together in a spatially dispersed group, and only 2 of these
individual were tracked using GPS at any given time. Although
mushroom foragers do not move completely independently, they
typically spread out so that they are at least 15 to 50 m apart,
and they often remain out of sight of each other, maintaining
contact by calling or whistling throughout the search period (53).
Foragers search in these loose groups so that lone individuals
do not become lost in steep, trackless, and dangerous terrain,
and so that there is help around in case of emergencies. Never-
theless, foragers keep their own harvests, giving them a personal
incentive to forage independently without overtly signaling their
encounters to other foragers.

Most trips occur in ecosystems predominated by fir trees
(Abies), where edible mushroom diversity and abundance are
high (55). Foragers typically alternate their visits among sites
within La Malinche National Park, leaving time for mush-
rooms to fruit between visits. Foragers target Ramaria, Boletus,

Cantharellus, and Amanita mushrooms due to their high market
value (56), as well as Turbinellus floccosus, which is highly appre-
ciated for cultural reasons and also the most frequently harvested
species. A detailed account of the diversity, abundance, and
distribution of mushroom species in this region is provided else-
where (52, 55). Multiple kinds of mushrooms were collected as
encountered during each trip, and no single trip was dedicated
to search for a single species. We, therefore, do not differentiate
the analysis by target species.

The local value of wild mushrooms was around 3 USD per kg
in 2006 (53). In the current sample, foragers gathered an aver-
age (±SD) of 3.7 ± 2.5 kg per trip, which would yield 11.1 ± 7.6
USD per trip if all collected mushrooms were sold. Taking into
account that foragers visit the forest three or more times dur-
ing the week, a single adult collector could obtain about 44.4 ±
30 kg/mo (133.2 ± 91.2 USD per month) from foraging dur-
ing the 4-mo rainy season. Mushroom foraging thus provides an
important source of cash income in rural areas. Knowing where

Pacheco-Cobos et al. PNAS | May 21, 2019 | vol. 116 | no. 21 | 10341
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A B

Fig. 1. Focal follow GPS recordings of Nahua mushroom foragers, 2006–2007. Shown in A are smoothed, low-resolution, and sometimes overlapping paths
for all trips in the dataset. At this large scale, searches appear fairly linear. Shown in B is a high-resolution image of the red-shaded area in A. At this scale, it
becomes evident that encounters with mushrooms (black dots) are associated with changes in search mode (shorter step-sizes and increased turning-angles).
Note that the paths are colored by time since last encounter with a mushroom of interest. The orange regions, representing search periods of at least 10
min postencounter, are mostly linear. The green regions, representing search periods shortly after an encounter, are more tortuous (B).

and when to look for mushrooms, as well as how to modulate
search mode upon encounter with a patch, is critical to optimiz-
ing the time and energy spent in the forest—as well as the cash
income associated with foraging.

Modeling Forager Movement
Estimating Theoretical GUTs. The MVT predicts that foragers
should make the switch between intrapatch search-and-harvest
and interpatch search for an undepleted locale when the
marginal encounter-rate within the current patch declines below
the average encounter-rate inclusive of within and between patch
costs (11). To test this prediction, we calculate the predicted
number of time-steps with no encounters that would be required
to decrease the intrapatch encounter-rate to or less than the
overall mean encounter-rate. This value is known as the GUT
and is a classic metric from the MVT literature used to mea-
sure patch leaving (14, 42). We then compare this value to the
empirically estimated number of time-step lags of intrapatch
search following an encounter before a forager fully resumes an
interpatch search pattern.

To arrive at a numerical prediction for our case study, we
first determine that the mean rate of encounters across for-
aging trips is 0.09 (interquartile range: 0.04, 0.12) encounters
per time-step (Table 1). Then, we evaluate when a horizon-
tal line with this value intersects the graph of y = 1

x+1
, where

the value x indicates how many time-steps with no encounters
have occurred after the most recent encounter, and the value y
gives the encounter rate since last encounter, inclusive of that
encounter. Given the average empirical encounter rate of 0.09
encounters per time-step and the interquartile range of 0.04 to
0.12 encounters per time-step, the MVT predicts that ∼8 to 21
time-steps without an encounter should cause mushroom for-
agers to transition from an intrapatch into an interpatch search
mode (Fig. 2).

Estimating Empirical GUTs. To calculate an empirical estimate of
GUT using encounter-annotated GPS tracks, we use a Bayesian
model linking encounters and forager movement patterns (22).
The data represent a forager’s search path as a sequence of dis-
crete points in space, (x[t], y[t]), with a constant separation of 30 s.
These data are easily converted into a more theoretically relevant
form via Cartesian-to-polar mapping (57). We can parameter-
ize the data so that r[t] ∈R+ gives the linear distance between

points (x[t], y[t]) and (x[t−1], y[t−1]), and θ[t] ∈ (−π,π) gives the
corresponding heading-angle:

r[t] =
√

(x[t]− x[t−1])2 + (y[t]− y[t−1])2 [1]

θ[t] = arctan?

∣∣∣∣ (y[t]− y[t−1])

(x[t]− x[t−1])

∣∣∣∣, [2]

where the arctan? function is the standard arctan function
after adjusting the angle for the quadrant of the point in
Cartesian space (57). Then, we transform heading-angle (an
absolute direction) into turning-angle, by considering the dif-
ference in heading-angle between time-steps. The unit-scaled
turning-angle, δ[t], is:

δ[t] =
∆(θ[t], θ[t−1])

π
, [3]

where the ∆(a, b) function returns the minimum of: |a − b| and
2π− |a − b|, since a 90◦ right turn is the same as a 270◦ left
turn, for example. Division by π radians yields a value on the
unit interval.

Since turning-angle is a unit-constrained variable, we can most
effectively model its distribution using a Beta regression model
(see ref. 58 for a formal justification):

δ[t]∼Beta(µ[t]ν, (1−µ[t])ν). [4]

The mean of the Beta distribution at time t is then given by µ[t]:

µ[t] = logit−1

(
ψ[0] +

S∑
s=1

ψ[s]E[t−s]

)
, [5]

and the dispersion of the distribution for a fixed µ is controlled
by ν ∈R+. E[t] is an indicator variable of whether a food item
was encountered at time-step t , ψ ∈RS+1 is a vector of unknown
parameters estimating the effects of encounters on turning-angle
over S time-step lags, and logit−1 is the inverse logit function.
Eq. 5 allows us to estimate how encounters with mushrooms at
lagged time-steps affect turning-angle in the current time-step.

Regarding the distribution of step-sizes, we use a log-normal
model, as information theoretic model comparison of step-size

10342 | www.pnas.org/cgi/doi/10.1073/pnas.1814476116 Pacheco-Cobos et al.
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Fig. 2. MVT prediction of GUT for mushroom foragers. Assume that a for-
ager has last encountered a food item at time-step zero, but then fails to
encounter food items in subsequent time-steps. The declining encounter-
rate since the last encounter, inclusive of that encounter, is given by the
black points. The horizontal red line shows the mean encounter-rate over
trips, inclusive of interpatch search costs. The shaded red zone shows the
corresponding interquartile range of encounter-rate over trips (Table 1).
The MVT predicts a transition from an intrapatch search-and-harvest mode
to an interpatch search mode where the lines intersect—at 8 to 21 time-
steps without an encounter. Note that there is a wide range of mean
encounter-rates over trips (red shaded region) and that the exact location
of the intersection point is sensitive to the value of mean encounter-rate for
small values on the y axis. Since the mean encounter-rate is quite variable
over trips, we acknowledge that the specific location of the intersection of
the curve with the horizontal line representing the mean encounter-rate
is consistent with a range of numerical predictions for optimal GUT—i.e.,
predictions of 8 to 21 time-step lags are all plausible.

in human movement (59) has shown that the log-normal dis-
tribution outperforms other commonly used distributions in
predictive accuracy.

Specifically, we model the distribution of step-sizes as:

r[t]∼Log-Normal(η[t],ω), [6]

where the mean of the log of the step-size at time t is given by
η[t]:

η[t] =

(
φ[0] +

S∑
s=1

φ[s]E[t−s]

)
, [7]

and the dispersion of the distribution of the log of step-size
for a fixed η is controlled by ω ∈R+. E[t] is the same indica-
tor of whether a food item was encountered at time-step t , and
φ∈RS+1 is a vector of unknown parameters estimating the
effects of encounters on step-size over S time-step lags. Eq. 7
allows us to estimate how encounters with mushrooms at lagged
time-steps affect step-size in the current time-step.

In this empirical model, a measure of GUT can be usefully
defined as the number of lags s for which there is a significant
relationship between a mushroom encounter at time-step t − s
and the movement parameters at time-step t . In other words,
the GUT is the maximum value of time-step lags, ŝ , such that

ψ[ŝ]> 0 for turning-angle outcomes and φ[ŝ]< 0 for step-size out-
comes, since these parameters measure the relationship between
an encounter ŝ lags in the past and one’s choice of search mode
at the present time-step. When more than ŝ time-steps have
passed without an encounter, the forager is operating in an inter-
patch search mode, but when less than ŝ time-steps have passed
since the last encounter, the forager is operating in an intrapatch
search mode. So long as ŝ > 0, these two search modes will have
statistically distinguishable properties.

Results
The empirical model shows that mushroom foragers use
encounter-conditional ARS heuristics to continually update their
search mode. This is demonstrated by strong and reliable lagged
effects of encounters on turning-angle and step-size (Fig. 3).
Fig. 3A plots the distributions (medians and 90% credible inter-
vals) of ψ[s], the lagged effect of encounters on turning-angle
for each s ∈{1, . . . , 30}. Fig. 3B shows the corresponding esti-
mates of φ[s], the lagged effects of encounters on step-size. Since
each time-step lag, s , is taken at 30-s intervals, the graphs show
estimates of lagged effects lasting up to 15 min postencounter.

We can compare these data on empirical GUT to the theoret-
ical prediction of this value from MVT. The regression estimates
of turning-angle, ψ[s], remain significantly greater than 0 for s <
6 to 9, indicating that encounters are associated with increased
turning-angle for about 3.0 to 4.5 min. Likewise, the regression
estimates of step-size, φ[s], remain significantly less than 0 for s <
8 to 13, indicating that encounters are associated with decreased
step-size (i.e., forager velocity) for about 4.0 to 6.5 min. These
data-driven results imply a GUT of between 6 and 13 time-steps
postencounter, closely matching the quantitative predictions of
the MVT (8 to 21 time-steps).

In the SI Appendix, we show that these results are robust
to analysis with a first-order autoregression (AR-1) model to
control for temporal autocorrelation in outcomes and an anal-
ysis that includes vertical displacement between time-steps as
a covariate to control for the effects of slope on search mode.
Additionally, we conduct an analysis using sex-specific regression
coefficients and find that male and female GUTs do not differ
substantially.

It is apparent from Fig. 2 that: (i) the exact threshold pre-
diction of the MVT is sensitive to small changes in average
return-rate, and (ii) this average return-rate is fairly variable over
trips in our database. Our results can be made more robust by
showing that although the exact threshold is hard to measure
precisely, foragers actually use a continuous mapping between
encounter rate and search mode. Specifically, the mushroom for-
aging data reveal a strong, continuous correspondence between
the parameters controlling the effects of encounters on for-
ager movement dynamics (Fig. 3) and the theoretically defined
encounter rate since last encounter (Fig. 2). The regression coef-
ficient of the relationship between the log of the encounter rate
since last encounter, log( 1

s+1
), and the log of the parameters

controlling the effects of encounters on turning-angle, log(ψ[s]),
is 1.20 (95% credible interval: 0.81, 1.60; r2: 0.88). Likewise,
the regression coefficient of the relationship between the log of
the encounter rate since last encounter, log( 1

s+1
), and the log

of the parameters controlling the effects of encounters on step-
size, log(|φ[s]|), is 1.70 (95% credible interval: 1.40, 2.0; r2: 0.93).
In other words, mushroom foragers smoothly transition from
a low-velocity, high-angle, intrapatch search mode to a higher-
velocity, lower-angle, interpatch search mode, in response to the
encounter-rate since last encounter (Fig. 4).

Our statistical results correspond qualitatively to what L.P.-C.
observed during his ethnographic observations of the mushroom
foragers. Foragers initially search for any hint of the presence of
mushrooms—e.g., distinctive bright colors, bumps of displaced
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A B

Fig. 3. Effects of encounters on turning-angle and step-size. Both A and B depict medians and 90% credible intervals. A shows ψ[s]—the lagged effect
of encounters on turning-angle—and B shows φ[s]—the lagged effect of encounters on step-size, for lags s∈{1, . . . , 30}. Lagged encounters significantly
affect both turning-angle and step-size, with effects lasting ∼6 to 9 time-steps (3.0 to 4.5 min) for turning angle, and ∼8 to 13 time-steps (4.0 to 6.5 min)
for step-size. Each bar in the plot illustrates the value of the increment or decrement in turning-angle or step-size (y axis) as a function of the number of
lags since last encounter (x axis). The number of lags for which the increment or decrement is significant is indicative of the length of time for which an
encounter affects search mode.

soil or detritus from the growth of mushrooms below, or symbi-
otic trees or plants—using a linear and high-velocity interpatch
search mode. Once they detect an edible mushroom, they quickly
cut it off at its base and, then, using a slower and more tortu-
ous intrapatch search mode, closely scan the surrounding area
(1 to 5 m) to find the “brother” mushrooms. After depleting a
local area of the easily located mushrooms, the foragers resume
an interpatch search mode until they spot another mushroom or
microhabitat clue signaling the presence of mushrooms.

Qualifications and Potential Issues. We note three potential
issues affecting our model and analysis. First, since the mean
encounter-rate is quite variable over trips in our data, we
acknowledge that a fairly wide range of numerical predictions
for optimal GUT—i.e., predictions of 8 to 21 time-step lags—
are all plausible. More precise evaluations of the MVT using
our methods could be conducted in systems where there is less

variation in return-rate over trips. Alternatively, if mean return-
rate is well explained by year, season, individual, or some other
characteristic—and the dataset is large—predictions and sta-
tistical evaluations could be made more precise by structuring
analyses by such variables.

Second, significant handling or processing time of resources
might confound the interpretation of model parameters. If pro-
cessing time after an encounter is large relative to the GPS sam-
pling rate, then the parameters giving the effects of encounters
on movement dynamics might reflect the behavioral response of
item processing rather than intrapatch search over some range
of lags. In the case of mushroom foraging, processing time is
generally very brief, involving nothing more than the removal
of attached soil or pine needles from the bottom of a harvested
fruiting body, so it is unlikely to confound our inferences beyond
a possible elevation of the effect sizes of parameters at a single
lag. In some cases, foragers first place collected mushrooms into

A B

Fig. 4. Continuous relationship between search mode and encounter-rate since last encounter. A shows the relationship between the log encounter-rate
since last encounter, log( 1

s+1 ), and the log of the regression coefficients giving the lagged effect of encounters on turning-angle, log(ψ[s]), for the lags with

reliable effects, s∈{1, . . . , 9}. B shows the relationship between the log encounter-rate since last encounter, log( 1
s+1 ), and the log of the absolute value

of the regression coefficient giving the lagged effect of encounters on step-size, log(|φ[s]|), for the lags with reliable effects, s∈{1, . . . , 13}. A and B show
a strong continuous relationship between search mode s time-steps after encounter with a food item and the encounter-rate since that last encounter.
A indicates that when the encounter-rate is relatively high, turning-angle changes are higher. This produces tortuous ARS when in a patch, and efficient,
unidirectional movement when outside of a patch. B indicates that when the encounter rate is relatively high, step-size decrements are higher. This yields a
slower search mode when in a patch and a higher velocity mode when outside of a patch.
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hand-held plastic bags or buckets, and then, when a sufficient
number of mushrooms have been gathered, they stop to clean
and pack them into wicker baskets carried on their backs. These
processing periods might lead to brief episodes of slow velocity
on the GPS recordings that are not associated with encounters,
leading to a downward shift in our estimates. Many of the for-
agers followed in this study, however, did not process items at
all upon encounter, preferring to do it collectively with the rest
of the group at the end of the day. In other cases of foraging,
processing and handling time may not be negligible, and gener-
alizations of our model that account for the effects of handling or
processing time may be needed to appropriately examine search
trajectories.

An additional concern about our results relates to the fact that
mushroom hunting is a partly social activity. Foragers will some-
times spend time waiting for others before engaging in longer
distance interpatch movement. These periods of waiting that are
not triggered by mushroom encounters also have the potential
to cause an underestimation of the extent to which encounters
trigger ARS, since these waiting events lead to slower movement
not associated with mushroom encounters. Nevertheless, we find
strong and statistically reliable evidence of such an effect here,
paralleling a similar study of Emberá Chamı́ blowgun hunters
embarking on solitary hunts (34).

Discussion
The MVT has been widely influential in studies of nonhuman
foraging (60, 61), especially in cases where resource patches
can be easily defined or experimentally controlled. The MVT
and related models have even been evaluated using archeolog-
ical case studies (62). However, direct tests of the model in
human foragers operating in natural environments have been
hard to conduct (41). Here, we provide a quantitative test of the
MVT using a database of high-resolution, encounter-annotated
GPS tracks from mushroom foragers searching in a naturalistic
setting.

As has been found in a study of artisanal fishers in the Common-
wealth of Dominica (19) and a study of Emberá Chamı́ blowgun
hunters pursuing small game in Colombia (34), we find evidence
that Nahua mushroom foragers use encounter-conditional ARS
heuristics when foraging. By extending the analysis to estimate
both theoretical and empirical GUTs, we have been able to further
demonstrate that these foragers use a form of ARS with a GUT
that is parameterized close to the theoretical MVT optimum.
Additionally, we provide a replicable statistical methodology that
can be broadly applied to similar data obtained from the study of
other human or nonhuman foragers.

We note here that a stochastic patch depletion and aban-
donment model developed by Oaten (50) generates predictions
that can diverge from those of the deterministic MVT given
by Charnov (11). Oaten’s model is considerably more compli-
cated than Charnov’s but indicates that a forager might benefit
from remaining in its current patch even if the marginal intra-
patch encounter rate has declined below the average overall
encounter-rate. This effect arises because the individual-level
encounter history can provide the forager with information about
the density of prey in the patch; an optimal forager can use
this information strategically to increase returns. Future work
might usefully explore if Oaten’s model could be operational-
ized in such a way that it could be effectively tested using
encounter-annotated GPS data like we have done here.

From Discrete Patches to Continuous Environments. To test the
MVT with standard methods, the patches of an environment
must be defined discretely. Such a classification of an environ-
ment is complicated by the fact that the relevant features of a
resource distribution are often difficult to observe or measure,
the patch boundaries diffuse, the patch locations ephemeral, and

the potential habitat range to be covered large (48). More gener-
ally, patches must normally be defined relative to the range of the
foraging organism, its cognitive and other capacities, its needs for
food and shelter, and its behavioral skills and proclivities (63).
This entails the accumulation of a potentially daunting amount
of species-specific information. At least in observational study of
humans, the difficulty of identifying and characterizing discretely
bounded environmental patches in a way that is independent of
forager behavior has impeded, but not prevented, tests of the
MVT (41). Although it may sometimes be necessary to define
a discrete set of patches to test the MVT, our methodology for
inferring GUTs from encounter-annotated GPS tracks mitigates
the general need.

Our approach, however, could be improved by moving away
from evaluations based solely on GUTs. While the length of time
for which encounters affect search mode is an important part of
ARS, so too is the overall magnitude of increments and decre-
ments to step-size and turning-angle as a function of encounters.
We have not yet explored how the magnitude of these changes
relate to classic foraging models like the MVT.

Our approach here, though incomplete, is still a step toward
extending the insights of early foraging theory models to contem-
porary algorithmic foraging models—for example, those based
on encounter-contingent search strategies. Jointly, the MVT and
encounter-contingent ARS models can lead to efficient search
algorithms in cases where discrete patches are impractical or
impossible to define, and behavioral outcomes must be gener-
ated in real-time. For example, robotic vacuum cleaners (64) can
be programmed to use dust sensors in their intakes to vary their
search speed as a function of the rate of dirt intake—with the
units slowing their movement to more thoroughly vacuum areas
with denser dirt deposits. By applying algorithms from forag-
ing theory, like ARS heuristics and the MVT, engineers may be
better able to optimize the design of such autonomous units.

Foraging Skill, Age, and Human Life History. Our focus on the
proximate heuristics—sensu Tinbergen (65)—that shape suc-
cessful foraging opens the possibility of studying how experi-
ence and socialization affect the acquisition of critical skills.
Human life history is peculiar due to an extended period of
juvenile dependence, which Kaplan et al. (66) argue was heav-
ily shaped by a hominin commitment to exploiting a suite of
high-quality, difficult-to-acquire resources; an enlarged brain,
delayed adulthood, and significant investment in learning were
entailed. González-Forero and coworkers (67, 68) use computa-
tional models to support the claim that human brain evolution
is better explained by ecological factors, such as finding and
catching food, rather than social challenges, such as formation
of tactical coalitions. Providing empirical support for the argu-
ment that an extended period of learning is required to become
a successful human forager, McElreath and Koster (69) exam-
ine a 20-y, longitudinal database of 147 Aché hunters, finding
that peak hunting effectiveness is reached at about 40 y of age.
Moreover, a large fraction of the variation in return-rates among
human hunters arises from variation in encounter rates (70),
demonstrating the importance of effective search heuristics in
hunting success.

By combining the research methods presented here with the
longitudinal, individual-level study design used by McElreath
and Koster (69, 70), it should be possible to produce age-
specific skill acquisition curves for search strategies, including
an estimation of the time it takes to learn effective GUTs for a
given resource type. Children start joining mushroom gathering
trips when they are about 10 y old, and they continue foraging
into adulthood. Foraging data collected over the developmen-
tal period paired with social network data (71) on teaching or
coforaging could further test for evidence of social transmission
of effective search behavior in a nonlaboratory setting (72).
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Wider Importance of Search Optimization and Foraging Theory. The
search behaviors analyzed here are ubiquitous and consequential
in both ancient and modern times, for human and nonhuman
foragers. While the MVT and foraging theory more broadly
are instrumental to the analysis of hunter-gatherer adaptations,
human life history, and our evolutionary origins (73), we all are
foragers still. Software designers have looked to foraging models
to aid in the design of internet search engines (7). Criminologists
have used foraging decision models to investigate “prey” selec-
tion by automobile thieves (5) and the internet search behavior
of sex offenders (74). Studies guided by models of search and
prey selection can serve conservation biology by estimating the
effects of current harvesting patterns on the middle- to long-term
stability of prey populations (75–78). Environmental heterogene-
ity and the MVT are particularly important to studies of resource
exploitation because they suggest that effective foragers will
abandon a patch before fully depleting it of prey (8, 9, 79–82);
our analysis illustrates that this same pattern should hold for
continuous resource distributions as well as those clustered in
discrete patches. Models of patch-residency times, like the MVT,
combined with models of prey choice, are well poised to play
a role in increasing the efficacy of integrated pest-management
strategies (10), by illuminating how decoy crops can most effi-
ciently be distributed and maintained. Cognitive scientists have
even used foraging theory models to examine the ways in which
our brains acquire and retrieve information (6, 83). It is easy
to envision the application of high-efficiency search strategies

in applied settings ranging from the design of robotic vacuum
cleaners and product distribution warehouses to the implemen-
tation of search and rescue efforts. Greater understanding of
the proximate heuristics underlying foraging decisions in patchy
environments thus engages a broad array of scientific and practi-
cal endeavors that should benefit from greater understanding of
how encounter-conditional search heuristics can be optimized.

Supporting Information. SI Appendix includes the results of
robustness checks and provides statistical and modeling details.

Materials and Methods
Methods of data collection and analysis have been fully described in the
main text. Additional methodological details and the results of robustness
checks are included in SI Appendix. Analysis of data was conducted using
R (84) and Rstan (85). The raw data and model code will be maintained at
https://www.github.com/ctross/mushrooming (86).

The research protocol and consent process for this investigation were
approved by the institutional committee at Posgrado Ciencias Biologicas
at the National Autonomous University of Mexico. Respondents provided
informed consent before participation.
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in the context of biological encounters and random searches. Phys Life Rev 5:
133–150.

25. Bénichou O, Loverdo C, Moreau M, Voituriez R (2006) Two-dimensional intermit-
tent search processes: An alternative to Lévy flight strategies. Phys Rev E 74:
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